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By identifying every pair of molecules that differ only by a particular, well-defined, structural transformation
in a database of measured properties and computing the corresponding change in property, we obtain an
overview of the effect that structural change has upon the property and set an expectation for what will
happen when that transformation is applied elsewhere. The mean change indicates the expected magnitude
of the change in the property and the number of cases in which the property increases give the probability
that the structural transformation will cause the property to increase. Outliers indicate potential ways of
avoiding the general trend. Comparing to changes in lipophilicity highlights structural transformations that
have unusual effects, some of which can be explained by conformational changes. In this paper, we focus
upon the effects on aqueous solubility, plasma protein binding and oral exposure of adding substituents to
aromatic rings and methylating heteroatoms.

Introduction

The process of lead optimization (LO) involves the identifica-
tion from within a lead series of the molecular entity with the
most appropriate achievable balance of properties. The series
of compounds that start this process, the “leads”, will generally
be the result of a search in which potency against the biological
target of interest has been the key parameter. Other properties
relevant to suitability as a drug candidate may have been
examined but are unlikely to have been optimized. In particular,
the structure-activity relationship (SAR) relating to the potency
of the series may have been mapped, but the relationship with
respect to other properties is unlikely to have been examined
so carefully.

Within AstraZeneca, as with other pharmaceutical companies,
databases of the properties relevant to any potential drug have
been built up over many years. These should provide a rich
mine of information that could guide the lead optimization
process by identifying structural changes that are likely to be
beneficial with respect to such properties. In this paper, we
describe an approach that we have developed to mine these data
and highlight how this can be deployed to guide molecular
design and to aid decision making in the LO process.

Background

In the analysis presented here, the focus is upon aqueous
solubility, binding to plasma proteins, and oral exposure in an
in vivo model. Several methods to predict each of these
properties have been presented before.1-3 The majority involve
the generation of a number of molecular descriptors and the
identification of a mapping between these and the property of
interest. This may be by way of a neural network, decision tree,
partial least squares, multiple linear regression or other machine
learning method, or a combination of such methods. Given a
molecular structure, the property can be predicted (to a greater
or lesser degree of certainty) and those compounds that are
predicted to have a desired value of the property might be

selected for synthesis. It is often not possible to know which
structural changes might lead to the desired outcome, so all
possible structures need to be envisaged to identify the best.
Multiple linear regression and partial least-squares analysis can
have the advantage of suggesting rules of thumb describing how
a descriptor should change to achieve the desired change in the
property. The structural changes that will achieve this are not
identified. All of these methods are highly dependent upon the
quality of the calculated descriptors and often involve extrapola-
tion outside the chemical space upon which the models were
built and where they are likely to be less reliable (or possibly
to fail altogether). A variation on this is to use a model relating
other measured data to a property of interest. This is often done
to model in vivo effects using in vitro measurements but is
exemplified by Yalkowsky and Valvani’s work relating aqueous
solubility to lipophilicity and melting point.4 Other, more
physical methods for prediction of solubility are available.5

A second way that data is frequently analyzed, particularly
with regard to potency, is that a few matched pairs of molecules
that differ only by a small structural change (a matched
molecular pair) will be identified and the corresponding change
in potency calculated.6 This is most commonly used to
breakdown SAR into manageable structural components and
such matched structures can be designed systematically accord-
ing to the Free-Wilson approach.7 As demonstrated previously,
the analysis can be used to study effects in ADME (absorption,
distribution, metabolism, and excretion) and physical properties
in a more generic fashion.8 Sheridan et al. recently reported
upon a data-mining tool that has been developed at Merck to
identify all of the small structural transformations that have been
tried in a particular series and their corresponding effects on
activity.9

An example of a matched molecular pairs analysis in SAR
is the pairs of molecules in Figure 1 taken from a publication
from Pfizer concerning inhibitors of cyclin dependent kinase 4
(CDK4).10 Although presented in that publication to show the
effect of changing the amine substituent R′, the data provide a
very clear profile of the effect of changing the second substituent
(Br or Ac in 1 and2 respectively) upon potency. The six sets
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of data (other examples in which one of the data points was
out of the range of the assay have been excluded), when
regrouped as shown in Table 1, can be used to give a more
balanced view of the effect of exchanging Br with Ac upon
potency than any individual pair of structures might. Indeed, it
is clear that, with a mean change in potency of 1.2 log units
(pIC50) and a standard error in that mean of 0.35, that
exchanging Br with Ac in this position increases potency
substantially and reliably, regardless of the nature of R′.
However, the magnitude of the change does depend on R′, even
though the two groups are rather distant from one another.

Similarly, the structures3 and4 (Figure 2) detailed in Table
2 corresponding to a set of matched molecular pairs involving
addition of chlorine to simple aromatic compounds that all have
aqueous solubility data available.11 These compounds are listed,
pairwise, in Table 2, and the logarithm of the aqueous solubility

at either 20 or 25°C is given for each compound. The table
also gives the difference in these log(solubility) measurements
for each set of molecular pairs. The matched molecular pairs
involve a range of substituents with different electronic proper-
ties at different positions around the ring. If this set of
substituents is sufficiently representative of all the substitution
possibilities around the ring, then the mean change reflects the
effect of chlorine addition independent of any interactions the
chlorine may have with other substituents. The data in Table 2
reveal that the effect of adding chlorine is more or less
independent of the solubility of ArH (3). For instance, contrast-
ing entries 1 and 3, the solubility of ArH differs by over 2 orders
of magnitude but the effect of adding chlorine is essentially
identical in each case. Examining structures in a pairwise fashion
reveals that addition of chlorine to an aromatic ring generally
decreases the solubility, regardless of the position of attachment.
The mean decrease in solubility is-0.75 log units, although
these data are not all at one temperature and the solvent is
unbuffered, so taking such a mean may not be appropriate in
this instance.

Table 2 also demonstrates the value of the analysis for
identifying interesting outliers. Entry 5, in which chlorine is
added ortho to the phenyl substituent, is clearly unusual; it has
a Z-score of 2.7 (the number of standard deviations away from
the mean difference). The solubility decreases by a markedly
smaller amount than in any of the other cases. Interestingly,
the addition of a chlorine in this position changes the confor-
mational profile about the Ar-Ph bond. According to the
Cambridge Crystallographic Database,12 in the absence of the
chlorine (all four ortho positions bearing H), the angle between
the planes of the two rings is generally between(35°. When
the chlorine is added, it is∼55° (for details see Supporting
Information). This increased twist is postulated to lead to less
efficient crystal packing and hence a larger solubility than would
be expected because the solid state is less stable.

Matched molecular pairs such as those above are usually
identified by hand, making the process very time-consuming
and prone to a lack of objectivity. Notably, pairs can be chosen
selectively to support a case while other pairs go unreported.
The number of pairs that are identified will be low and hence
likely to lack statistical significance. The method has the
advantage of involving only measured data, with no extrapola-
tion to unmeasured compounds. If the set of pairs chosen were
to be large and diverse enough, the computed effect of the
structural change should set the expectation for what will happen
in any series.

A suite of programs that can be used to identify all the pairs
of molecules that fit a particular structural change within a set
of molecules has therefore been developed at AstraZeneca. The
set of molecules in each case consists of all those compounds
with entries in a database of measured molecular properties.
Effects on ADME and physical properties have been our focus
due to the value in understanding their link to structure in the
lead optimization process. In this paper, we discuss three
properties: aqueous solubility, plasma protein binding, and oral
exposure. Such properties are relevant to a drug-hunting
program, regardless of the target, so the analysis should be very
widely applicable. The statistical analysis presented here yields
the probability that a particular structural change will push a
property in the desired direction and predicts the likely
magnitude of such a change and the variability in that
magnitude. The most general view of the effect of that structural
change on the particular molecular property available from the
dataset can therefore be assessed.

Figure 1. Pfizer CDK4 inhibitors: matched molecular pairs in which
Br is exchanged for Ac have been made and tested.10

Figure 2. Matched molecular pairs corresponding to the addition of
chlorine to an all-carbon aromatic ring.

Table 1. Matched Molecular Pairs (1 and2) Demonstrating the Effect
upon Potency (IC50) of Changing Br to Ac in a Set of Compounds
Illustrated in Figure 110

IC50 (µM) pIC50

R′ Br Ac Br Ac
pIC50(Br) -
pIC50(Ac)

piperazine 0.16 0.011 6.80 7.96 +1.16
(CH3OCH2CH2)2N 1.1 0.051 5.96 7.29 +1.33
3,5-dimethylpiperazine 0.063 0.037 7.20 7.43 +0.23
N-methylpiperazine 0.136 0.005 6.87 8.30 +1.43
4-hydroxypiperidine 0.074 0.019 7.13 7.72 +0.59
morpholine 1.95 0.004 5.71 8.40 +2.69

Table 2. The Effect of Adding Chlorine to an Aromatic Ring on
Aqueous Solubility for a Range of Simple Aromatic Compounds11

log(solubility)a

entry
substituent

R

position
relative to

Cl in 4
ArH
(3)11

ArCl
(4)11

change ina

going from
ArH to ArCl

T
(°C)11

1 Me 4 -2.25 -3.02 -0.77 20
2 OH 2 -0.12 -0.86 -0.74 25
3 OH 3 0.01 -0.71 -0.72 20
4 OH 4 0.01 -0.78 -0.79 20
5 Ph 2 -4.27 -4.54 -0.27 25
6 Ph 3 -4.27 -4.94 -0.67 25
7 Ph 4 -4.27 -5.19 -0.92 25
8 NO2 2 -1.81 -2.55 -0.74 20
9 NO2 3 -1.81 -2.76 -0.95 20

10 NO2 4 -1.81 -2.74 -0.93 20
11 OMe 2 -1.92 -2.46 -0.54 25
12 OMe 3 -1.92 -2.78 -0.86 25
13 OMe 4 -1.92 -2.78 -0.86 25

a Solubility in water in M. This is the geometric mean of all of the
solubility values given at the appropriate temperature in ref 11.
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Aqueous solubility is a key parameter for drugs, as it
fundamentally limits the amount of compound that can be
present in solution in the gut and in the circulation.11,13Solubility
can limit the bioavailability of a compound and lead to high
patient-to-patient and fed-to-fasted variation. The FDA regula-
tions concerning oral medications require more investigation
of low solubility compounds.14 Plasma protein binding limits
the amount of compound that is free in solution in the plasma
and influences the volume of distribution and clearance of a
compound.15 Binding can be to any of the many proteins that
are present in the plasma. The most significant of these groups
of proteins is the albumins,16 but others such asR-1-acid
glycoproteins17 are also present and can contribute to the reduced
level of free compound in solution. The presence of a drug in
the plasma at detectable levels after oral dosing is a key
requirement; this can be quantitated from the area underneath
the concentration versus time plot when plasma concentration
is monitored. This oral exposure is a composite property
depending upon many other parameters, such as solubility,
permeability, efflux potential, metabolism, excretion, and plasma
protein binding.

Results and Discussion

The analysis will be illustrated by two sets of structural
changes: the addition of substituents to an aromatic ring and
the methylation of heteroatoms. Their effect on three pharma-
ceutically relevant propertiessaqueous solubility, rat plasma
protein binding, and oral exposure in ratsshas been studied.

(a) Substituents on Six-Membered All-Carbon Aromatic
Rings. The AstraZeneca (Alderley Park) databases of aqueous
solubility measurements, rat plasma protein binding measure-
ments, and rat oral exposure measurements were investigated
to find all occurrences of pairs fitting the description in Figure
3 for a small range of X. In this case, compounds were not
limited to single aromatic rings, such that the substituents on
the six-membered ring in fused systems, for example indoles,
would also be included. This is one of the subtleties of the
analysis; it is essential that the results are presented in such a
way that the reader is clear how narrowly defined the scope of
the pairs is. In our programs for finding matched molecular pairs,
the pair members are defined by SMARTS and hence their
chemical structure can be tightly controlled. After finding all
pairs, the corresponding solubilities,K1 values for rat plasma
protein binding, and area under the curve values for rat oral
exposure were added, and the difference in the log of the
solubilities, difference in the log ofK1, and the difference in
the log of the area under the curve [log(AUC)] were computed
for each pair. Each of these properties is normally distributed
on a logarithmic scale and for each set of pairs, the distribution
of the differences is approximately normal. The mean changes
in each property for each set of pairs is computed, along with
the corresponding standard deviation and standard error of the
mean. Furthermore, the percentage of cases in which addition
of the substituent causes an increase in each property (regardless
of by how much) has been computed. The 95% confidence
interval on this percentage is computed from the binomial
probability function.18 The total number of pairs in each case

is also listed. Experience with this kind of analysis has suggested
that there should be at least 20 pairs for the set to be useful.
The analysis relies upon the set of pairs being representative.
However, sometimes a particular transformation will be repre-
sented exclusively, or almost exclusively, by pairs from one
particular series and the set may not be representative of the
general trend. Only well-populated, diverse compound sets are
given in this paper. Table 3 gives the data for solubility, Table
4 for plasma protein binding, and Table 5 for oral exposure.

Table 3 reveals that many effects upon aqueous solubility
that might be expected are indeed observed. For instance, the
addition of the heavier halogens is detrimental to solubility.
More than that, it provides a numerical estimate for how large
their effect upon solubility will be. It reveals that adding bromine
to an aromatic ring leads, on average, to over an order of
magnitude reduction of aqueous solubility. In terms of making
decisions for synthesis, it reveals that adding bromine led to a
decrease in solubility in 43 of the 44 cases (98%) where the
data are available in our database. This can be approximately
equated to the probability of seeing a decrease in solubility when
bromine is added to the aromatic ring of a different compound.
Thus, if solubility is a major issue in a drug-hunting project,
then addition of bromine should be a very low synthetic priority,
and if bromine is already present, its removal should be
considered.

Figure 3. Matched molecular pairs for substitution on an aromatic
ring detailed in Tables 3-5.

Table 3. The Effect of Adding Substituents to Aromatic Rings upon
Aqueous Solubility

change in log(solubility)

X meana SDb SEMc
no. of
pairs

% in which
solubility
increasesd

mean
change in

clogPe

F -0.22 0.69 0.03 711 34 (30-37) +0.13
Cl -0.67 0.69 0.04 326 14 (11-18) +0.69
Br -1.10 0.67 0.10 44 2 (0-12) +0.89
CF3 -0.81 0.71 0.09 69 17 (9-28) +0.95
Me -0.21 0.71 0.06 166 33 (26-41) +0.43
OMe -0.11 0.68 0.04 297 42 (37-48) -0.01
CN -0.26 0.87 0.09 104 36 (26-46) -0.38
OH +0.07 1.00 0.18 32 56 (38-74) -0.57
SO2Me +0.26 0.65 0.12 28 71 (51-87) -1.51

a The mean value of log(solubility) for ArX- log(solubility) for ArH,
where solubility is in M.b The standard deviation of the distribution of the
values of log(solubility) for ArX- log(solubility) for ArH. c The standard
error of the mean in column 2.d The percent of cases in which the solubility
increases, no matter by how much; the values in parentheses are the 95%
confidence limits in this value (see ref 18).e The mean of the distribution
of values of clogP for ArX- clogP for ArH (see ref 19).

Table 4. Effect of Adding Substituents to Aromatic Rings upon Rat
Plasma Protein Binding

change in log(K1)

X meana SDb SEMc
no. of
pairs

% in which
K1 increasesd

mean
change in

clogPe

F +0.15 0.29 0.01 467 77 (73-81) +0.13
Cl +0.54 0.35 0.02 242 95 (92-98) +0.65
Br +0.78 0.45 0.07 39 97 (87-100) +0.88
CF3 +0.60 0.45 0.07 46 89 (76-96) +1.00
Me +0.22 0.35 0.03 115 79 (71-86) +0.42
OMe +0.02 0.41 0.03 171 58 (50-65) -0.06
CN -0.06 0.40 0.04 60 38 (26-52) -0.38
OH -0.24 0.36 0.06 31 29 (14-48) -0.53
SO2Me -0.55 0.37 0.08 20 0 (0-14) -1.43

a The mean value of log(K1) for ArX - log(K1) for ArH, whereK1 is
the association constant for rat plasma proteins, concentrations being
measured in M.b The standard deviation of the distribution of the values
of log(K1) for ArX - log(K1) for ArH. c The standard error of the mean in
column 2.d The percent of cases in which the plasma protein binding
increases, no matter by how much; the values in parentheses are the 95%
confidence limits in this value (see ref 18).e The mean of the distribution
of values of clogP for ArX- clogP for ArH (see ref 19).

6674 Journal of Medicinal Chemistry, 2006, Vol. 49, No. 23 Leach et al.



To identify whether the effect on solubility determined for
each transformation is merely a reflection of the change in
lipophilicity, the corresponding change in clogP for all of the
matched molecular pairs was computed.19 In Figure 4, the mean
change in solubility is plotted against the mean change in clogP.
The error bars are the standard error of each mean. According
to the analysis of Yalkowsky and Valvani, the solubility should
be given by4,21

and hence changes in solubility are given by4

This is in effect a lipophilicity dependence with slope-1 and
a term dependent on the solid state. Figure 4 is consistent with
this model. There is a trend for increases in lipophilicity to
correspond to decreases in solubility; notably, the changes for
OMe, F, Me, Cl and CF3 do fall around a line of slope ca.-1,
such as the one plotted in Figure 4, which goes through the
origin. Furthermore, introduction of groups that involve hydrogen-
bond acceptors causes a larger decrease in solubility or smaller
increase than their effect on lipophilicity would suggest (the

same is also true of donors as detailed in section b). These
groups have the potential to be involved in interactions in the
solid state that are stronger than any solvation they may
engender in the solution state. This is consistent with eq 2,
because these structural transformations are expected to lead to
changes in the melting point of these compounds. An interesting
exception to this is the addition of OMe, reflecting the
exceptionally poor hydrogen-bond-acceptor qualities of anisole
type ethers.20 This contrasts with the better acceptor qualities
of dialkyl ethers, which lead to their marked effects on solubility
observed in other matched pairs analyses not reported here.

In contrast to the picture for aqueous solubility, the plot of
changes in rat plasma protein binding against changes in clogP
in Figure 5 (from data in Table 4) reveals that lipophilicity
accounts for the general trend seen in changes in the association
constant for the addition of various substituents to aromatic
rings. Although it is common within AstraZeneca to measure
plasma protein binding in rat plasma, particularly for drug
discovery applications, the property that may be of more interest
is the plasma protein binding in man, which is used in
predictions of the human pharmacokinetics.22 Although the
AstraZeneca database is very much smaller for human plasma
protein binding, the data for the same sets of matched pairs
that are sufficiently represented have been identified. In Figure
6, the mean change in human plasma protein binding is plotted
against the mean change in rat plasma protein binding (human
data is given in the Supporting Information). The error bars
correspond to a single standard error of the mean. The plot
reveals that changes in rat plasma protein binding in general
translate very well to the corresponding change in human plasma
protein binding. This suggests that rat plasma protein binding
is an appropriate surrogate for the human equivalent to drive
medicinal chemistry against, as well as suggesting that the
matched molecular pairs analysis described here is relevant to
human as well as rat plasma protein binding.

The final property investigated for this set of structural trans-
formations is oral exposure as measured by the area under the
curve (normalized for dose) in a high-throughput blood level
assay in rats. The mean difference in log(AUC) has been com-
puted for each matched molecular pair and is listed in Table 5.
In Figure 7, the change is plotted against the corresponding
change in clogP. The error bars are the standard errors of each
mean. This plot shows that for the addition of Me or OMe to an
aromatic ring there is a statistically significant decrease in blood
levels and for the addition of F there is a small but statistically

Table 5. Effect of Adding Substituents to Aromatic Rings upon Oral
Exposure in an in Vivo Rat Model

change in log(AUC)

X meana SDb SEMc
no. of
pairs

% in which
log(AUC)
increasesd

mean
change in

clogPe

F +0.09 0.65 0.03 551 55 (51-60) +0.14
Cl -0.03 0.74 0.04 359 44 (39-49) +0.63
Br +0.02 0.75 0.11 49 53 (38-67) +0.89
CF3 -0.03 0.97 0.12 71 48 (36-60) +0.97
Me -0.18 0.74 0.06 176 39 (32-47) +0.47
OMe -0.18 0.84 0.06 226 42 (36-49) -0.07
CN -0.04 0.99 0.11 83 41 (30-52) -0.39
OH -0.19 0.90 0.12 54 48 (34-62) -0.54
SO2Me -0.11 0.95 0.13 51 53 (38-67) -1.36

a The mean value of log(AUC) for ArX- log(AUC) for ArH, where
AUC is the dose-normalized area under the curve in a rat oral exposure
assay in (hµg/mL)/(mg/kg).b The standard deviation of the distribution of
the values of log(AUC) for ArX- log(AUC) for ArH. c The standard error
of the mean in column 2.d The percent of cases in which the AUC increases,
no matter by how much; the values in parentheses are the 95% confidence
limits in this value (see ref 18).e The mean of the distribution of values of
clogP for ArX - clogP for ArH (see ref 19).

Figure 4. The mean change in log(solubility) plotted against the mean
change in clogP for a set of matched molecular pairs involving the
addition of substituents to a six-membered all-carbon aromatic ring.
Error bars correspond to a single standard error in each mean. A line
of best fit is not plotted because of the stratification into groups
involving changes in the hydrogen bond acceptor or donor count and
those that do not. The dashed line is a line of slope-1 through the
origin.

log SW ≈ -log P - 0.01× mp + 1.05 (1)

∆log SW ≈ -∆log P - 0.01× ∆mp (2)

Figure 5. The mean change in log(K1) for rat plasma protein binding
plotted against the mean change in clogP for a set of matched molecular
pairs involving the addition of substituents to a six-membered all carbon
aromatic ring. Error bars correspond to a single standard error in each
mean. The dark line is the line of best fit (R2 ) 0.94).
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significant increase in blood level. However, in all cases there
is a very broad variation in the effect, as indicated by the large
standard deviations and the fact that most of the means are not
statistically distinct from a change of 0 at 95% confidence. The
probabilities are significant in four cases that indicate that adding
F is likely to be beneficial in increasing the AUC whereas adding
Cl, Me, or OMe will be detrimental. This property is more
suitable for a study localized to a series of interest, because the
position at which the substituent is added clearly influences the
effect it has. This is frequently the case for potency too, because
substituents will be involved in interactions with the target
protein that will be very dependent upon their position in three
dimensions. In the present case of oral exposure, the ability of
substituents to block metabolism, for instance, will be highly
dependent upon the detailed structure of the molecule.

Taken together, Tables 3-5 indicate, for instance, that adding
a fluorine to an aromatic ring will decrease solubility (66%
chance), increase plasma protein binding (77% chance), and
increase oral exposure (55% chance). In this case, all of these
probabilities are on sufficiently large datasets that they are
statistically distinct from 50% at the 95% confidence interval.
Addition of fluorine might be worth considering in a series that
is not too highly protein bound and in which oral exposure is
lacking. Similarly, if solubility were an issue, it might be worth
removing any chlorine or bromine substituents or adding a
methyl sulfone substituent.

Often, there will be a substituent present in a compound on
an aromatic ring and it will be of interest what the effect of
changing that substituent to something else will be rather than
of simply removing it. To test that the mean changes in Tables
3-5 are relevant to this, the effect of interchanging the three
halogens has been probed for all three properties described so
far. This is detailed in Tables 6-8 for each property in turn.
Although there is some overlap between the compounds
involved in deriving the initial set of matched pairs and those
in the set for halogen interchange, the two sets are derived
independently of one another. If they are consistent, it gives an
indication that the effects being studied are indeed independent
of the structure of the remainder of the molecule. The data for
solubility, plasma protein binding and oral exposure in Tables
3-8 reveal that all of the step change means are within two
standard errors of one another whether derived for substituent
addition or substituent interchange. Hence, Tables 3-5 can be
used to predict the effect for substituent interchange from the
difference in the means for substituent addition. Furthermore,
the means thus derived can be related to a probability using the
plot of the percent of cases leading to an increase against the
mean change in Figure 8 for aqueous solubility, Figure 9 for
plasma protein binding, and Figure 10 for oral exposure. This
is illustrated with arrows in the plot for aqueous solubility in
Figure 8; a mean change in log(solubility) of-0.7 corresponds
to a 15-20% chance that the corresponding transformation will
increase solubility. This set of transformations does not provide
a good dataset for the oral exposure assay for this analysis and
leads to the flat line at∼50% in Figure 10.

Figure 6. The mean change in log(K1) for human plasma protein
binding against the corresponding change for rat. The error bars
correspond to a single standard error in each mean and the dark line is
the line of equality.

Figure 7. The mean change in log(AUC) for rat oral exposure plotted
against the mean change in clogP for a set of matched molecular pairs
involving the addition of substituents to a six-membered all-carbon aro-
matic ring. Error bars correspond to a single standard error in each
mean.

Table 6. Effect of Interchanging Halogen Substituents on
Six-Membered Aromatic Rings from Ar-X1 to Ar-X2 upon Aqueous
Solubility

change in log(solubility)

X1 X2 meana SEMb
no. of
pairs

F Cl -0.49 0.04 231
F Br -0.74 0.12 28
Cl Br -0.21 0.07 47

a The mean value of log(solubility) for Ar-X2 - log(solubility) for Ar-
X1, where solubility is in M.b The standard error of the mean in column 3.

Table 7. Effect of Interchanging Halogen Substituents on
Six-Membered Aromatic Rings from Ar-X1 to Ar-X2 upon Plasma
Protein Binding

change in log(K1)

X1 X2 meana SEMb
no. of
pairs

F Cl +0.43 0.02 195
F Br +0.60 0.06 41
Cl Br +0.15 0.02 59

a The mean value of log(K1) for Ar-X2 - log(K1) for Ar-X1, where
K1 is the association constant for rat plasma proteins, the concentrations
being measured in M.b The standard error of the mean in column 3.

Table 8. Effect of Interchanging Halogen Substituents on
Six-Membered Aromatic Rings from Ar-X1 to Ar-X2 upon Oral
Exposure in a Rat in Vivo Model

change in log(AUC)

X1 X2 meana SEMb
no. of
pairs

F Cl -0.01 0.03 311
F Br -0.13 0.09 45
Cl Br -0.11 0.05 72

a The mean value of log(AUC) for ArX2 - log(AUC) for ArX1, where
AUC is the dose-normalized area under the curve in a rat oral exposure
assay in (hµg/mL)/(mg/kg).b The standard error of the mean in column 3.
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The discussion above indicates that, on average, the addition
of different substituents to an aromatic ring will cause the
properties to change to different degrees. This need not mean
that for any one compound that the effect of adding the different
substituents can be distinguished. To probe this, the sets of
molecular triplets in which F and Cl have been added to the
same position on an aromatic ring have been found and are
presented side by side in the Supporting Information. Other
substituent interchanges were less well represented in the
datasets. The solubility of the chloride (ArCl) and the fluoride
(ArF) is plotted against the corresponding solubility of the
unsubstituted compound (ArH) in Figure 11. The corresponding
plots for plasma protein binding and oral exposure are in Figures
12 and 13, respectively. As might have been expected from the
data in Table 3, adding chlorine to an aromatic ring does, in
general, decrease the solubility by more than adding fluorine
in the same place. Indeed, in 78% of cases where this has been
done, the chloride is less soluble. Similarly, the trend for plasma
protein binding is clear in Figure 12, and adding chlorine leads
to a more highly protein bound compound than fluorine in 90%
of the cases where the corresponding compounds have been
made. The indistinct trends in the oral exposure are reflected

in the overlaid distributions in Figure 13, and the chloride has
a lower AUC in 57% of cases.

The analyses described so far serve a further function to that
already suggested. By quantitating what may be expected from
the addition of a particular substituent to an aromatic ring, it is
possible to identify those transformations that lead to an
unexpected result. For instance, the transformation from5 to 6
in which adding chlorine actually causes an increase in solubility
by 1.5 log units is far from expectation (Z-score of 3.1) (Figure
14). This can be understood in terms of a conformational effect
constraining the urea group to be orthogonal to the aromatic
ring in 6, whereas more planar conformations that may stack

Figure 8. The percent of cases in which an increase in log(solubility)
is observed compared to the mean change in log(solubility).

Figure 9. The percent of cases in which an increase in log(K1) for
plasma protein binding is observed compared to the mean change in
log(K1).

Figure 10. The percent of cases in which an increase in log(AUC)
for oral exposure is observed compared to the mean change in log-
(AUC).

Figure 11. The log(solubility) of corresponding aromatic chlorides
and fluorides compared to the log(solubility) of the parent aromatic
compound.

Figure 12. The log(K1) for plasma protein binding of corresponding
aromatic chlorides and fluorides compared to the log(K1) of the parent
aromatic compound.

Figure 13. The log(AUC) for rat oral exposure of corresponding
aromatic chlorides and fluorides compared to the log(AUC) of the parent
aromatic compound.

Figure 14. An unusual change in solubility: adding chlorine to5
causes an increase in solubility.
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better in the solid state are permitted in5. Figure 15 shows how
the energy of the model compounds7 and 8 varies with the
torsion highlighted twisting the urea out of plane as computed
at the B3LYP/6-31G*a level (constrained to the angle indicated
at each point and with the conformation shown about the urea
C-N bond).2,23,24 Overlaid with this is the number of com-
pounds with the substructure shown as9 and 10 that have
torsions within the bin centered on each torsion angle that are
observed in the Cambridge crystallographic database.12 It can
be seen that these two measures agree well and that low-energy
structures are well-represented in the Cambridge database. The
structures with just oneo-chlorine are expected to be planar
and those with twoo-chlorines are expected to be almost orthog-
onal. The full data set is reported in the Supporting Information.

The dramatic effect upon solubility of adding chlorine to5
to get6 highlights the importance of conformational effects in
transcending expectation. To investigate the generality of this
effect, the small number of pairs in which a substituent is added
ortho to an anilide already bearing a single heavy atom
substituent (F, Cl, Br, Me, OH, etc.) in the other ortho position,
illustrated by11 and 12 in Figure 16, have been located and
characterized by theirZ-score for all three properties. There are
three examples for X) F in the solubility dataset with a mean
Z-score for the change in log(solubility) of+1.49 (range) +0.8
to +2.6), one example for X) Cl with a Z-score of+3.10,
and three examples for X) Me with a meanZ-score of+1.56
(range) +0.59 to+2.41). These examples are clearly outliers
in the positive direction, which is to say that the solubility does
not decrease by as much (or increases) as is usual for the
addition of each of these substituents. In the protein binding
matched pairs, there is one example for X) Cl with a Z-score
of -6.01 and one example for X) Me with aZ-score of-5.63.
These massive outliers indicate that protein binding does not
increase by anywhere near as much as expected for the general
case of adding these substituents. Finally, in the oral exposure
data, there is one example for X) F with a Z-score of 0.08
and one for X) Me with a Z-score of-0.10. The effect on
AUC is clearly unexceptional.

Entry 5 in Table 2 highlighted the effect of adding substituents
ortho to a biphenyl-type linkage, and this was rationalized as a
conformational effect. The generality of this effect has been
studied by finding all matched pairs resembling13 and 14
(Figure 16). In the aqueous solubility matched pairs set, there
are 13 examples for Y) F with a meanZ-score of+0.54 (range
) -0.44 to +1.45) and there are five examples for Y) Cl
with a meanZ-score of+1.93 (range) +1.34 to+2.42). In
the plasma protein binding matched pairs, there are nine
examples for Y) F with meanZ-score of-0.80 (range)
-3.69 to+0.01) and two examples for Y) Cl with a mean
Z-score of-0.60 (range) -0.81 to-0.39). In the oral exposure
dataset, there are 12 examples for Y) F with a meanZ-score
of -0.34 (range) -2.25 to+1.51) and one example for Y)
Cl with a Z-score of 1.01. The pairs corresponding to11 and
12 as well as13 and 14 indicate that when a conformational
effect causes compounds to prefer to be less planar, solubility
tends to increase more than expected (or decrease less than
expected), the extent of plasma protein binding tends to increase
less than expected, and AUC does not vary in a predictable
fashion. A visual inspection of all of the outliers (|Z-score| >
2) in each distribution indicates that in the case of solubility,
the majority of the outliers could have a contribution from a
conformational effect, whereas the distinction was not so clear

a Abbreviations: B3LYP/6-31G*, density functional theory method
employing Becke’s 3 parameter exchange functional and the Lee, Yang,
Parr correlation functional and the 6-31G* basis set; CCDB, Cambridge
Crystallographic Database; SMILES, Simplified Molecular Input Line Entry
System; SMARTS, SMILES Arbitrary Target Specification.

Figure 15. The conformational preferences of compounds with the substructures indicated. Thex-axis on each plot gives values of the torsion
angle indicated in red. The curve is the energy computed by B3LYP/6-31G* for7 (left-hand side) and8 (right-hand side) for structures in which
the dihedral angle is constrained to the angle shown. The overlaying bars correspond to the number of structures containing9 (left-hand side) or
10 (right-hand side) with a torsion angle falling within a bin centered at each value on thex-axis.

Figure 16. Structural changes that lead to significant changes in
conformation.
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in the protein binding pairs, and as might be expected, there is
little distinction in the oral exposure matched pairs. Most of
the outliers are assumed to arise due to the experimental
variation that should be expected in such large datasets.

(b) Methylation of Heteroatoms. By way of a second
illustration of the type of structural transformation whose effect
upon properties may be considered, the effect of methylating
heteroatoms in a small number of functional groups has been
investigated. These transformations are described in Figure 17
and the effects on the same three properties discussed above
are given in Tables 9-11.

A number of the effects upon solubility in Table 9 may be
surprising. The first is that methylation of alkyl alcohols has
almost no effect upon solubility on average. In this transforma-
tion, the lipophilicity is being increased, which should diminish
solubility (principally an aqueous phase effect), whereas removal
of a hydrogen-bond donor should increase solubility (principally
a solid state effect). These two effects cancel out overall. The

most surprising effect is the substantial increase in solubility
predicted for the methylation of amides. Here, the removal of
the donor must completely outweigh any effect of the increase
in lipophilicity. Presumably, this reflects the ability of amides
with a free N-H to provide ideal donor-acceptor complemen-
tarity in the solid state, which can lead to infinite ladders of
hydrogen bonds, as exemplified by the crystal structure of15
in Figure 18. Furthermore, N-methylation is expected to remove
the preference for the conformation in which R and R′ (in Figure
17) are antiperiplanar to one another that is strongly favored
by secondary amides. TheN-methylamides populate both
conformations about the amide bond in solution and so will
suffer a larger entropic loss upon rigidification in the crystal
lattice.

The effect of methylations upon protein binding is given in
Table 10 and illustrated with the plot against mean change in
clogP in the Supporting Information. Once again, amide
methylation is an obvious outlier. Amide methylation decreases
the extent of plasma protein binding despite the apparent added
lipophilicity. This may reflect an error in clogP or the ability
of amides with free N-Hs to interact well with other such
amides (as discussed for their solubility), like those making up
the plasma proteins. Finally, in contrast to the lack of consistent
effects upon oral exposure observed for the addition of sub-
stituents to aromatic rings, there is a marked effect upon oral
exposure when particular groups are methylated, as shown in
Table 11 and in the plot against clogP in the Supporting
Information. Notably, despite enhancing solubility and likely
related to the decrease in plasma protein binding (which should
increase overall metabolic clearance), amide methylation de-
creases log(AUC) on average. Methylation of phenolic hy-

Figure 17. A number of heteroatom methylations for which matched
molecular pairs have been identified.

Table 9. The Effect of Methylating Some Heteroatoms upon Aqueous
Solubility

change in log(solubility)

X-H meana SDb SEMc
no. of
pairs

% in which
solubility
increasesd

mean
change in

clogPe

amide +0.64 0.73 0.06 142 79 (71-85) +0.31
ROH -0.01 0.68 0.05 203 44 (37-51) +0.46
ArOH -0.22 0.84 0.20 17 41 (18-67) +0.10
RR′NH -0.32 0.69 0.07 107 34 (25-43) +0.30

a The mean value of log(solubility) for X-Me - log(solubility) for X-H,
where solubility is in M.b The standard deviation of the distribution of the
values of log(solubility) for X-Me - log(solubility) for X-H. c The
standard error of the mean in column 2.d The percent of cases in which
the solubility increases, no matter by how much; the values in parentheses
are the 95% confidence limits in this value (see ref 18).e The mean of the
distribution of values of clogP for X-Me - clogP for X-H (see ref 19).

Figure 18. The ladder of hydrogen bonds forN-(4-acetylaminobutyl)acetamide,15 (Cambridge database code ABAWOQ).12,25

Table 10. Effect of Methylating Some Heteroatoms upon Rat Plasma
Protein Binding.

change in log(K1)

X-H meana SDb SEMc
no. of
pairs

% in which
K1 increasesd

mean
change

in clogPe

amide -0.23 0.31 0.03 88 22 (14-32) +0.34
ROH +0.14 0.26 0.02 154 74 (66-81) +0.42
ArOH +0.09 0.44 0.11 16 63 (35-85) +0.21
RR′NH +0.17 0.33 0.03 104 69 (59-78) +0.21

a The mean value of log(K1) for X-Me - log(K1) for X-H, whereK1

is the association constant for rat plasma proteins concentrations being
measured in M.b The standard deviation of the distribution of the values
of log(K1) for X-Me - log(K1) for X-H. c The standard error of the mean
in column 2.d The percent of cases in which the protein binding increases,
no matter by how much; the values in parentheses are the 95% confidence
limits in this value (see ref 18).e The mean of the distribution of values of
clogP for X-Me - clogP for X-H (see ref 19).
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droxyls increases log(AUC), accompanying a small increase in
plasma protein binding.

Conclusions

The above results indicate that building up a database of
structural transformations and their likely effect upon a broad
range of properties can provide a useful tool for the optimization
of pharmaceutically relevant properties. Notably, during the lead
optimization phase of a drug discovery program, relatively
conservative structural perturbations, such as those described
above, may be considered around a particular molecular core.
The examples illustrate that a global matched molecular pairs
analysis can be used to guide molecular design as it naturally
suggests structural transformations that may have the desired
effect upon a particular property or across a range of properties.
The method can be applied to other structural transformations,
many of which will be of more interest to medicinal chemists.
The method can be used as a tool to test many of the “rules of
thumb” that abound within medicinal chemistry. By analyzing
the data in a categorical sense (increase or decrease), an
approximate probability that the structural change will cause
the property to move in one direction or another can be
computed, assuming that the effects observed previously can
be projected forward to different chemotypes. This analysis does
rely upon a diverse data set being available.

Although here the focus has been upon three properties (four
if clogP is included), any property can be treated just as well,
although the larger the experimental variation, the more difficult
it is to identify statistically significant effects. The data presented
here show that analysis of properties such as solubility that
depend on a limited number of equilibria or rates are more likely
to present clear trends. In more complex properties, such as
oral exposure, the structural dependency of the many competing
processes may confound the identification of these trends. The
derived information should be applicable regardless of the
particular biological target of the drug-hunting project. If the
mean change is to be computed, the property should be on a
scale on which it is normally distributed. If very clear trends
are identified, the analysis can have the considerable benefit of
reducing the need for some measurements, which is particularly
important where in vivo experiments can be avoided.

In order for the analysis to be useful, it is not essential that
the cause of the effects be understood. It is often enough just
to know what effect a structural change is likely to have.
However, as the brief aside concerning the solubility effect of
the methylation of amides indicates, the analysis of these effects
can provide insight.

By quantitating the effect that particular transformations are
expected to have, the analysis permits unusual effects to be
identified. These fall into two categories: the first is a structural
change that has a surprising effect, such as the effect of
methylation of an amide upon solubility, and the second is an
unusual effect within a set of matched molecular pairs, such as
the effect of going from5 to 6 upon solubility. Both of these
can provide valuable ideas for compound optimization.

Methods

Identifying an appropriate set of matched molecular pairs requires
informatics tools that are capable of finding pairs of molecules
within a set that are related to one another by a defined structural
difference. Our database in this case consists of a set of molecules
represented by their SMILES and a measured property for each.
We have two different approaches for identifying matched pairs in
these databases. The first involves the in-house program LEATH-
ERFACE.8 This is a molecular editor that can be used to transform
the SMILES for all instances of one pair member into the SMILES
for the other pair member, according to rules specified by the user.
The structural transformation rules are encoded by SMARTS; hence,
the structural transformation can be chemically well defined.26 When
identifying matched pairs such as3 and4 that differ only by the
addition of chlorine to an aromatic ring, we take each occurrence
of ArCl and delete the chlorine (see Scheme 1). By matching the
processed SMILES (appropriately standardized)27 with the original
SMILES set (also standardized), pairs of compounds that differ
only by the desired change, such as those shown in Figure 2, can
be found. The alternative method, implemented in the in-house
program find_pairs,28 requires the substructure defining each pair
member to be coded in SMARTS and identifies molecules that are
the same when these SMARTS hits are excluded. The connectivity
of the atoms outside the SMARTS groups to those within must be
mapped between the two. This is illustrated for the matched pairs
such as3 and4 in the lower part of Scheme 1. These two different
approaches are most appropriate to different kinds of structural
transformation. There are numerous alternative ways of locating
matched molecular pairs that will be more or less suitable for
different kinds of structural transformation and to more or less
global analyses.

Once the pairs of compounds have been identified, the corre-
sponding data can be added and the difference or ratio computed,
as appropriate, along with the appropriate statistics. In our case,
this is carried out by the in-house program otsboho.29 Solubility
values are determined from agitation of compounds in 0.1 M
phosphate buffer at pH 7.4 for 24 h at 25°C. The supernatant is
separated from undissolved material by double centrifugation and
subsequently analyzed and quantified against a standard of known
concentration in DMSO using generic HPLC-UV methodology
coupled with mass spectral peak identification. Any measurement
that is out of range of the assay is excluded from the analysis, and
the lowest value of the measured solubilities is found for each
compound that has been tested more than once. Variations in this

Table 11. Effect of Methylating Some Heteroatoms upon Rat Oral
Exposure

change in log(AUC)

X-H meana SDb SEMc
no. of
pairs

% in which
log(AUC)
increasesd

mean
change in

clogPe

amide -0.28 0.77 0.07 113 33 (24-42) +0.20
ROH +0.06 0.84 0.07 161 43 (35-51) +0.53
ArOH +0.59 0.87 0.21 18 78 (52-94) +0.49
RR′NH +0.16 1.01 0.15 46 63 (48-77) +0.45

a The mean value of log(AUC) for X-Me - log(AUC) for X-H, where
AUC is the dose-normalized area under the curve in a rat oral exposure
assay in (h‚µg/mL)/(mg/kg).b The standard deviation of the distribution
of the values of log(AUC) for X-Me - log(AUC) for X-H. c The standard
error of the mean in column 2.d The percent of cases in which the AUC
increases, no matter by how much; the values in parentheses are the 95%
confidence limits in this value (see ref 18).e The mean of the distribution
of values of clogP for X-Me - clogP for X-H (see ref 19).

Scheme 1.Overview of the Process for Identifying Matched
Molecular Pairs with Either the Molecular Editor
LEATHERFACE (top) or the find_pairs Program (bottom)
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assay occur because the samples are often in different solid states:
either polymorphs or amorphous. The lowest solubility is our best
estimate of the solubility of the most stable polymorph. Protein
binding is determined by equilibrium dialysis. A 20µM concentra-
tion of compound is dialyzed against 10% plasma at a temperature
of 37 °C for 18 h. The resulting samples are analyzed using generic
HPLC-UV methodology coupled with mass spectral peak identi-
fication.30 The reportedK1 value is the first apparent association
constant [protein·ligand]/([protein][ligand]), all concentrations being
measured in moles/liter. Any measurement that is out of the range
of the assay is excluded from the analysis and the geometric mean
of the first apparent association constantK1 is computed for all
compounds that have been tested more than once. Variations in
this assay should not depend on the solid form, so the mean is
taken to minimize changes due to experimental variation. The rat
oral exposure assay involves the cocktail dosing of five test
compounds plus a quality control compound (2 mg/kg per
compound) to two rats. Plasma samples, which are obtained for up
to 6 h after dosing, are analyzed by LC-MS-MS. The area under
the curve (AUC) in hµg/mL is divided by the dose in mg/kg and
the geometric mean value taken for those compounds that have
been tested more than once. This is done in order to minimize
effects due to experimental variation.

Supporting Information Available: Data concerning the
interplane angle change in biphenyl compounds wheno-chlorine
is added, matched pairs analysis of human plasma protein binding,
data on the conformational change experienced on going from
compound5 to 6, pairwise comparison data (all three properties)
for adding F and Cl to aromatic rings, and variation with
lipophilicity of all three properties for the methylation of assorted
heteroatoms. This material is available free of charge via the Internet
at http://pubs.acs.org.
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